
A ruthenium tris(2,2'-bipyridine)-viologen 1:2 linked disul-
fide was prepared.  A gold electrode modified with this com-
pound showed a higher efficiency of photocurrent as compared
with a corresponding 1:1 linked compound.

Fabrication of organized molecular assemblies in which a
photoredox pair is elaborately arranged on the electrode surface
is promising to achieve highly-efficient photoelectric conver-
sion.1 Recently, novel electron donor-acceptor linked sulfur
compounds have been prepared and photo-electrochemical
properties of their self-assembled monolayers (SAMs)2 on gold
surfaces have been investigated.3-11

A ruthenium tris(2,2'-bipyridine)-viologen (Ru2+-V2+) cou-
ple is a typical photoredox pair for generating charge-separated
states.12-14 We previously reported the photocurrent responses
from gold electrodes modified with Ru2+-V2+ (1:1) linked disul-
fides.5,9 It was also suggested that the photocurrent induced by
electron-transfer from photoexcited Ru2+(*Ru2+) to V2+ was
suppressed by the reverse electron-transfer reaction.9 Highly-
efficient charge-separation in the SAMs is primarily important
to obtain larger photocurrents. 

Early studies using organized V2+ assemblies as electron
accepting sites achieved highly-efficient charge-separated
states, ascribing to electron migration among the V2+ assem-
blies.15 From these viewpoints, we have prepared a Ru2+-V2+

1:2 linked complex A, intending for achieving efficient charge-
separation in the SAM.  The A-modified gold electrode gave a
higher efficiency of photocurrent as compared with a Ru2+-V2+

1:1 linked complex B in terms of the identical coverage.

The preparation procedure of A is shown in Scheme 1.
The coupling reaction of a bipyridine derivative 1 and a
monopyridinium thioacetate 2 in CH3CN under reflux gave a
bisviologen-linked bipyridine ligand 3 in 9% yield.  The final
product was obtained in 29% yield by the reaction of

Ru(bpy)2Cl2⋅2H2O and 3, followed by hydrolysis and oxidation.
The formation of A was confirmed from the 1H-NMR.16 The
Ru2+ moiety shows a characteristic absorption band at the ∼400–
∼500 nm region based on metal-to-ligand charge-transfer transi-
tion.   They were essentially identical in A and B, indicating no
appreciable interactions between Ru2+ and V2+ moieties at the
ground states.  Redox potentials of A (1.20, -0.38, -0.83, -1.30 V
vs. Ag/AgCl (sat. KCl)) in CH3CN using 0.1 mol dm-3

(C4H9)4NClO4 as a supporting electrolyte were almost identical
to the corresponding values of B (1.20, -0.39, -0.82, -1.31 V vs.
Ag/AgCl (sat. KCl)).

However, the luminescence intensity of A was substantial-
ly smaller than that of B, as shown in Figure 1.  Since the spac-
er-chain lengths between the Ru2+ and the V2+ moieties are
identical in A and B, the result of Figure 1 strongly suggests
that the efficient electron-transfer quenching of *Ru2+ by the
V2+ moieties is occurring in A as compared with B.  

The gold electrode was prepared by vacuum deposition of
gold onto a mica plate (30×10×1 mm) (roughness factor 2.7).
It has a polycrystalline surface from cyclic voltammetric meas-
urements in aqueous H2SO4.   It was immersed into a CH3CN
solution containing A or B (1×10-3 mol dm-3 = M as monomer
unit) for one day.  After soaking with CH3CN and methanol,
the A-(or B-) modified electrode was dried with a stream of
nitrogen gas.  

Formation of the SAM was confirmed from XPS and
cyclic voltammetric measurements.9 XPS results indicated the
formation of S–Au bonding (161.7 eV : S(2p1/2)) and no signifi-
cant peaks due to  free –SH and –SS– groups were detected.
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From the analysis of broad and reversible redox-peaks for one-
electron reduction of the V2+ moieties (A-modified electrode:
-0.49V, B-modified electrode: -0.44V vs. Ag/AgCl (sat. KCl)),
fractional coverages of A and B were evaluated to be 3.6×10-11

and 2.0×10-10 mol cm-2, respectively.  A considerably lower
coverage for A may be at least in part due to increased
intramolecular and intermolecular electrostatic repulsion among
the positively charged Ru2+ and V2+ moieties in the SAM, as
compared with the case of B. 

Photocurrent measurements for the modified electrodes
were taken in aqueous solutions containing triethanolamine
(5×10-2 M) as a sacrificial reductant and NaClO4 (0.1 M).
Figure 2 shows a photocurrent action spectrum for the A-modi-
fied electrode at 0 V vs. Ag/AgCl (sat.KCl).  The photocurrent
was observed in the anodic direction.  The spectrum showed a
broad band, almost overlapping with the absorption band in
solution.  The B-modified electrode also showed similar pho-
tocurrent results as reported previously.9

Potential dependencies of photocurrents under illumination
at 470 ± 40 nm (4.1 mW cm-2) were compared between the two
modified electrodes.  Larger photocurrents were observed from
the B-modified electrode because of the higher coverage as
compared with the A-modified electrode.  However, the effi-
ciency of photocurrent is roughly twice higher in the A-modi-
fied electrode, if the comparison is made in terms of the identi-
cal coverage as shown in Figure 3. 

There can be two pathways for the photoinduced electron-

transfer from the *Ru2+ to the V2+ moieties in A.  In fact, the effi-
ciency of photoinduced electron-transfer from *Ru2+ to V2+

became substantially higher by linking the two V2+ moieties.
Obviously, this is one of the requirements for improving the pho-
tocurrent efficiency.  However, it is not clear at this stage how
effectively the two V2+ moieties cooperate to retard the reverse
electron-transfer.  Structural differences between the SAMs of A
and B also should be considered.  Absorption spectral measure-
ments after controlled potential reduction of A may be helpful to
elucidate the role of the V2+ moieties, and the work is in progress
along this line.
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